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1 Introduction

Quantum transport effects are gaining more and more interest in many applications in

modern particle physics and cosmology. This is true in particular for the case of the

electroweak baryogenesis [1–5], but also for the leptogenesis [6] or particle creation in

the early universe [7] and during phase transitions [8]. We have recently developed new

quantum transport equations for fermionic systems including nonlocal coherence, either

in space (quantum reflection) or in time (coherent pair production) [9, 10], including the

effects of decohering collisions [10]. Here we will introduce a similar formalism for the

scalar fields. As in the fermionic case, the coherence information is found to be encoded in

new spectral solutions in the phase space of the dynamical 2-point function. The physical
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information of particle numbers or fluxes and of coherence is carried by a set of scalar

functions that parametrize the spectral shells in the full 2-point correlation function.

Our approach can be summarized as follows. We first formulate Schwinger-Dyson

equations for the 2-point correlation functions using the Closed Time Path (CTP) method.

We solve the resulting Kadanoff-Baym (KB) equations for the 2-point Wightman func-

tion ∆< in the noninteracting mean field limit in the mixed representation. The most

general solution for ∆< in this limit is a sum of singular spectral distribution functions

corresponding to the usual mass-shell solutions with a dispersion relation ω2 = ~k2 + m2,

and a new coherence solutions living at shell kz = 0 in the static planar symmetric case

or at shell k0 = 0 in the case of a spatially homogeneous system. We then turn back to

the full KB-equations including collision terms and integrate them with an appropriate set

of moments. On the adiabatic boundaries the lowest moments of ∆< can be related to

the spectral on-shell functions. From practical point of view the most important aspect

of our method is that the singular shell structure reduces integrated equations of motion,

including the collision terms, to a closed set of equations for spectral on-shell functions,

or equivalently for a finite number of lowest moments of ∆< (three in case of a single real

scalar field).

Since the singular shell representation of the coherence is so crucial for our formalism,

we have given several examples which illustrate their physical role. Firstly, we will solve the

bosonic Klein problem. We will show that in the absence of the coherence shell the quantum

nature of reflection is completely lost, but that the correct reflection and tunneling factors

are recovered when the coherence shell is included. We will also show that the spectral phase

space definition of particle number in our formalism is consistent with other definitions for

nonequilibrium systems in the literature [11]. In particular, our particle number, when

applied to Bunch-Davies vacuum in the inflation, corresponds to the adiabatic particle

number that remains always zero in a conformally coupled scalar theory [12]. The Klein

problem example also allows us to demonstrate how the on-shell functions are related

to moment functions that must be used to formulate a dynamical problem with only an

incomplete information about the variables defining the system. We will also consider

production of unstable scalar particles by a coherent time dependent background potential

and decoherence and thermalization of an initially highly correlated state.

This paper is organized as follows. In section 2 we briefly review the basic CTP-

formulation for the calculation of the 2-point function and in section 3 we derive the

spectral shell structure of the Wightman function in the mean field limit. In section 4

we use our formalism to solve the bosonic Klein problem. We also derive an expression

for our on-shell particle number in terms of moment functions and compare it with other

definitions in the literature and apply it to the particle production during inflation. We also

compute other measurable quantities such as energy density and the pressure. In section 5

we solve the nonrelativistic problem with a Schrödinger equation and show that there one

obtains similar coherence solutions for the description of reflection in the planar symmetric

case. We complete this section by solving the bound states of the square well potential with

our formalism. In section 6 we show that, just as with fermions, the coherence solutions

are excluded from the spectral function by the spectral sum rule. In section 7 we derive
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Figure 1. Schwinger-Keldysh path in complex time.

the dynamical (moment) equations for a scalar field including collisions for a spatially

homogeneous system. In section 8 we consider coherent production of unstable particles.

Finally section 9 contains our discussion and outlook.

2 CTP-formalism for scalars

The main object of interest for us is the 2-point Wightman function ∆< for a real scalar

field, defined as:

i∆<(u, v) ≡ 〈φ(v)φ(u)〉 ≡ Tr {ρ̂ φ(v)φ(u)} , (2.1)

where ρ̂ is some unknown quantum density operator that gives the complete information

of the system. Instead of trying to find a solution for ρ̂, we will set up equations for

the “in-in” correlation function (2.1) using the Schwinger-Keldysh or Closed Time Path

(CTP) formalism [13, 14]. In this formalism one first defines 2-point correlation function

on a complex time-path:

i∆C(u, v) = 〈TC [φ(u)φ(v)]〉 , (2.2)

where TC defines time ordering along the Keldysh contour shown in figure 1. One can show,

for example by use of the two-particle-irreducible (2PI) effective action techniques [14, 15],

that ∆C(x, y) obeys the contour Schwinger-Dyson equation:

∆C(u, v) = ∆0
C(u, v) +

∫

C
d4z1

∫

C
d4z2 ∆0

C(u, z1)ΠC(z1, z2)∆C(z2, v) , (2.3)

where ∆0
C is the free propagator of the theory, and the precise form of the self-energy

function ΠC depends on the Lagrangian and the truncation scheme. Once the theory is

specified, it can be computed from the 2PI-effective action by functional differentiation:

ΠC(u, v) ≡ i
δΓ2[G]

δ∆C(v, u)
, (2.4)

where Γ2 is the sum of all two particle irreducible vacuum graphs in the theory. The

complex time Green’s function in (2.2) can be decomposed in four different 2-point functions

with respect to usual real time variable:

i∆<(u, v) ≡ i∆+−(u, v) ≡ 〈φ(v)φ(u)〉
i∆>(u, v) ≡ i∆−+(u, v) ≡ 〈φ(u)φ(v)〉
i∆F (u, v) ≡ i∆++(u, v) ≡ θ(u0 − v0)i∆

>(u, v) + θ(v0 − u0)i∆
<(u, v)

i∆F̄ (u, v) ≡ i∆−−(u, v) ≡ θ(v0 − u0)i∆
>(u, v) + θ(u0 − v0)i∆

<(u, v) , (2.5)
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where ∆F and ∆F̄ are the chronological (Feynman) and anti-chronological (anti-Feynman)

Green’s functions, respectively, and ∆< and ∆> are the Wightman functions we are pri-

marily interested in solving here. A similar decomposition can be done for the contour

self-energy ΠC to get:

Πab(u, v) ≡ iab
δΓ2[G]

δ∆ba(v, u)
, (2.6)

where the indices a, b refer to the position of the arguments u and v, respectively, on the

complex Keldysh time path. When a = +1(−1) the time argument in u belongs to the

upper (lower) branch in figure 1, and we will use the same notation: Π< = Π+−, etc. for

the self energy as we did for the propagators (2.5). It can then be shown that the complex-

time equation (2.3) is equivalent to the following matrix equation with a usual real time

argument:

∆−1
0 ⊗ ∆ = σ3 δ + Π ⊗ σ3∆, (2.7)

where

∆ =

(

∆F ∆<

∆> ∆F̄

)

, Π =

(

ΠF Π<

Π> ΠF̄ ,

)

(2.8)

and σ3 is the usual Pauli matrix, and we defined a shorthand notation ⊗ for the convolution

integral:

f ⊗ g ≡
∫

d4zf(u, z)g(z, v). (2.9)

We have also left out the labels u and v where obvious; for example δ ≡ δ4(u− v).

2.1 Kadanoff-Baym equations

It’s appropriate to further define the retarded and advanced propagators (a similar decom-

position obviously holds for the self energy function Π):

∆r(u, v) ≡ θ(u0 − v0)(∆> − ∆<)

∆a(u, v) ≡ −θ(v0 − u0)(∆> − ∆<). (2.10)

Moreover, the hermiticity properties of the Wightman functions:

[

i∆<,>(u, v)
]†

= i∆<,>(v, u) (2.11)

imply that [i∆r(u, v)]† = −i∆a(v, u), which suggests a decomposition into hermitian and

antihermitian parts:

∆H ≡ 1

2
(∆a + ∆r)

A ≡ 1

2i
(∆a − ∆r) =

i

2

(

∆> − ∆<
)

. (2.12)

The antihermitian part A is called the spectral function. Based on (2.10) it is easy to

show that ∆H and A obey the spectral relation: ∆H(u, v) = −isgn(u0 − v0)A(u, v). Since
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the self-energies Π satisfy identities similar to (2.11), we can define the hermitian and

antihermitian parts of Πr,a as well:

ΠH ≡ 1

2
(Πa + Πr)

Γ ≡ 1

2i
(Πa − Πr) =

i

2

(

Π> − Π<
)

. (2.13)

Using the definitions (2.12)–(2.13) it is now straightforward to show that eqs. (2.7), when

written in the component form, become:

(∆−1
0 − ΠH) ⊗A− Γ ⊗ ∆H = 0

(∆−1
0 − ΠH) ⊗ ∆H + Γ ⊗A = δ (2.14)

and

(∆−1
0 − ΠH) ⊗ ∆< − Π< ⊗ ∆H =

1

2

(

Π> ⊗ ∆< − Π< ⊗ ∆>
)

, (2.15)

where ∆−1
0 is the inverse free propagator. Equations (2.14) are called the pole equations

and eq. (2.15) the Kadanoff-Baym (KB) equation. The other KB-equation for ∆> need not

be considered, since form the definition (2.12) it immediately follows that ∆> = ∆<−2iA.

2.2 Mixed representation

The final step in our formal derivation is moving to the mixed representation, to separate

the external and internal degrees of freedom in the correlators through a Wigner transform:

F (k, x) ≡
∫

d 4r eik·rF (x+ r/2, x− r/2) , (2.16)

where x ≡ (u + v)/2 is the average coordinate, and k is the internal momentum variable

conjugate to relative coordinate r ≡ v − u. Performing the Wigner transformation to

eqs. (2.14) and (2.15) we get the pole-equations

∆−1
0 A− e−i♦{ΠH}{A} − e−i♦{Γ}{∆H} = 0 (2.17)

∆−1
0 ∆H − e−i♦{ΠH}{∆H} + e−i♦{Γ}{A} = 1 (2.18)

and the KB-equation for ∆< becomes

∆−1
0 ∆< − e−i♦{ΠH}{∆<} − e−i♦{Π<}{∆H} = Ccoll , (2.19)

The collision term in eq. (2.19) is given by

Ccoll = −ie−i♦
(

{Γ}{∆<} − {Π<}{A}
)

, (2.20)

and the ♦-operator is the following generalization of the Poisson brackets:

♦{f}{g} =
1

2
[∂Xf · ∂kg − ∂kf · ∂Xg] . (2.21)
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Equations (2.17)–(2.19) are the master equations appropriate for all analysis to be per-

formed in this paper. Explicit forms of ∆0 and the interactions depend on the model. In

this paper we consider a theory defined by the Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2φ2 + Lint , (2.22)

where m = m(x) is possibly spacetime dependent mass and Lint is the interaction part

to be defined later. The inverse free propagator corresponding to eq. (2.22) in the mixed

representation is

∆−1
0 ≡ k2 − 1

4
∂2 + ik · ∂ −m2e−

i

2
∂m

x ·∂∆

k , (2.23)

where the ∂mx -derivative always acts on the mass term, and the ∂∆
k -derivative to the Green’s

function A, ∆H or ∆< in eqs. (2.17)–(2.19) respectively.

3 Shell structure

In analogy to what was found in the case of fermions [9, 10], a reasonable approximation

scheme can be developed for an interacting theory employing the spectral shell structure of

the noninteracting theory. So let us first consider noninteracting fields, for which Πab = 0.

In this case the KB-equation (2.19) for ∆< decouples from the pole-functions ∆H and A
and reduces to Klein-Gordon equation in momentum space:

(

k2 − 1

4
∂2 + ik · ∂ −m2e−

i

2
∂m

x ·∂∆

k

)

i∆< = 0 . (3.1)

This is still a very complicated equation because it contains derivative operators to ar-

bitrarily high orders. We shall analyze it in more detail in the mean field limit, where

m2e−
i

2
∂m

x ·∂∆

k → m2, assuming also particular space-time symmetries: a case with a spatial

homogeneity and a static problem with a planar symmetry.

3.1 Spatially homogeneous case

In the spatially homogeneous case all spatial gradients of the mass m = m(t) and the

correlator ∆< vanish. Breaking the equation (3.1) into real and imaginary parts and

expanding to zeroth order in the time derivatives acting on the mass then gives:

(

k2
0 − ~k2 −m2(t) − 1

4
∂2
t

)

i∆<(k, t) = 0 (3.2)

k0∂ti∆
<(k, t) = 0 . (3.3)

At this point it is relevant to make a comparison with the similar problem involving

fermions [9, 10]. In the fermionic case the noninteracting KB-equations can be divided

into algebraic constraint equations which define the phase space structure of the theory

and to dynamic equations containing all time derivatives. Here such a division is not possi-

ble, as both equations contain derivative terms, and the shell structure is less obvious than

with fermions. However, if we assume that k0 6= 0 then eq. (3.3) requires that ∂ti∆
< = 0

– 6 –
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at all times and so one must also have ∂2
t i∆

< = 0. Substituting this back to eq. (3.2) does

lead to an algebraic equation

(

k2
0 − ~k2 −m2(t)

)

i∆<
m−s = 0 . (3.4)

This equation has the spectral solution parametrized by t:

i∆<
m−s(k0, |~k|, t) = 2π sgn(k0)fsk0

(|~k|, t)δ
(

k2
0 − ~k2 −m2(t)

)

, (3.5)

where sk0 ≡ sgn(k0). This is just the usual mass-shell dispersion relation

k0 = ±ω~k(t) ≡ ±
√

|~k|2 +m2(t) . (3.6)

Of course this derivation was not exact, and the solution (3.5) satisfies exactly neither (3.2)

nor (3.3), except for constant m and fsk0
. The point is that equations (3.2) and (3.3) are

actually inconsistent for a nonconstant mass, but the corrections that would bring the

consistency back are proportional to mass-gradients. The result (3.5) is thus correct to the

lowest order in mass-gradients. In particular the effect of the second order derivative term

in (3.2) to the mass-shell structure is beyond the mean field approximation.

However, if we first set k0 = 0, then equation (3.3) is identically satisfied and we

cannot constrain the size of the derivative terms as was done above. Instead, eq. (3.2)

now becomes:

∂2
t ∆̄

< = −4ω2
~k
(t)∆̄< . (3.7)

For a constant mass the solution for this equation is

i∆̄<
const(k0, |~k|, t) = 2πĀ~k cos(2ω~kt+ δ~k) δ(k0) , (3.8)

where Ā~k and δ~k are some real constants and the δ-function is explicitly taking care of the

restriction to the shell k0 = 0. For a generic time-varying mass an analytical solution for

i∆̄< might not be available, but we can write the corresponding solution for k0 = 0 in the

spectral form:

i∆̄<(k0, |~k|, t) = 2π fc(|~k|, t)δ(k0) , (3.9)

where fc(|~k|, t) is some real-valued function. This establishes that there exists a new

solution living at shell k0 = 0. However, one can ask if and how this new solution can

affect the dynamics of the mass-shell functions f±? Indeed, in the constant mass case,

where fc is given by eq. (3.8) and f± = const., the answer is no, as expected. To get

these solutions however, we implicitly introduced prior information on k0 that allowed a

reduction to one particular shell at a time. More generally, one might be interested in

systems where only an imprecise or even no prior information is available on k0. In such

cases some integration procedure over k0 must be introduced to define observable physical

quantities, and these quantities typically involve contributions from several shells. When

such integration procedure is imposed on eqs. (3.2)–(3.3) they generally lead to nontrivial

mixing involving the functions fc. We will return to this procedure in more detail in

section 4. The basic issue however is that the phase space of the free dynamical function in

– 7 –
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the noninteracting system is singular in the mean field limit, and it contains new spectral

shell at k0 = 0 such that the most complete solution for a given momentum |~k| is the

combination of the solutions (3.5) and (3.9):

i∆<(k0, |~k|, t) = i∆<
m−s(k0, |~k|, t) + i∆̄<(k0, |~k|, t) . (3.10)

The situation is now seen to be qualitatively equivalent to the case with fermions and we

interpret analogously [9, 10] that the new k0 = 0-solution (3.9) describes the quantum

coherence between particles and antiparticles.

3.2 Planar symmetric case

Another simple geometry that allows analytic solutions is the case with m = m(z) and

∂t,x,yi∆
< = 0, i.e. a static planar symmetric problem in the average coordinates in the

Wigner transformation1. In this case the mean field limit of the equation (3.1) is:

(

k2
0 − ~k2 −m2 +

1

4
∂2
z

)

i∆<(k, z) = 0 (3.11)

kz∂zi∆
<(k, z) = 0 . (3.12)

The analysis proceeds analogously to the homogeneous case. For kz 6= 0, eq. (3.12) gives

∂zi∆
< = 0 for all z so that ∂2

z i∆
< = 0 as well, and eq. (3.11) again reduces to the

algebraic form:
(

k2
0 − ~k2 −m2(z)

)

i∆<
m−s = 0 . (3.13)

This equation is similar to eq. (3.4), except that in this case energy is conserved, and the

mean field momentum kz is the quantity that becomes dependent on z. Taking this into

account we write the spectral solution in the form

i∆<
m−s(k0, |~k|||, kz , z) = 2π sgn(k0)fskz

(k0, |~k|||, z)δ
(

k2
z − k2

m(z)
)

, (3.14)

where

kz = ±km ≡ ±
√

k2
0 − ~k2

|| −m2(z) . (3.15)

This is again the usual mass shell solution. We get a new solution by first setting kz = 0,

so that eq. (3.12) is identically satisfied and eq. (3.11) becomes:

(

∂2
z + 4k2

m(z)
)

i∆̃< = 0 . (3.16)

In constant mass limit one again finds a solution similar to eq. (3.8), only now restricted

to shell kz = 0: i∆̃<
const = 2πÃ cos(2kmz + δ̃) δ(kz), where Ã(k0, |~k|||) and δ̃(k0, |~k|||) are

some real constants. For an unspecified spatially varying mass term eq. (3.16) has a generic

spectral solution:

i∆̃<(k0, |~k|||, kz , z) = 2π fc(k0, |~k|||, z)δ(kz) , (3.17)

1Note that this actually means that the initial direct space correlator depends only on the internal

time- or ~x||-separation: i∆<(t, ~x; t′, ~x′) = i∆<(t− t′; ~x|| − ~x′
||; z, z

′). Thus all problems for which the wave

equations have stationary solutions with ψ ∝ eiEt (such as reflection problem) appear in this sense static

in the Wigner transformed representation. Same applies of course for stationary dependence on ~x||.

– 8 –
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where fc(k0, |~k|||, z) is some real-valued function. Finally, combining the solutions (3.14)

and (3.17) we find the most complete solution in static, planar symmetric case for given

energy k0 and parallel momentum |~k|||:

i∆<(k0, |~k|||, kz , z) = i∆<
m−s(k0, |~k|||, kz, z) + i∆̃<(k0, |~k|||, kz , z) . (3.18)

In this case the mass shell solutions describe modes of left (negative direction in z) and right

(positive direction in z) moving states, and the zero momentum solution their coherence.

Indeed, here the coherence solution can be pictured as quantifying the possibility that the

state is simultaneously going both right and left (interference). It is therefore natural to

see this solution arising at the average momentum kz = 0 for such a mixture.

4 Applications

Having found the spectral solutions, we wish to apply our formalism to solve special physical

problems including dynamical evolution. Parallel to our analysis with fermions [9, 10], we

need to define nonsingular weighted 2-point functions to replace the singular ones (3.10)

and (3.18). These functions can be given in the following generic form:

ρW(k0, ~k, x) ≡
∫

d4k′

(2π)4
W(k0, ~k | k′0, ~k′;x) i∆<(k′0,

~k′, x) , (4.1)

where the weight function W(k0, ~k | k′0, ~k′;x) encodes our knowledge about the energy and

momentum variables of the state. (In fact a number of different weight functions may be

needed as we will see below.) Above, with the constant mass examples, we already used

implicitly weight functions encoding precise energy or momentum resolution and below

we shall give two more examples. In the case of quantum reflection off a potential wall

(Klein problem), one may have relatively precise information on energy, but only partial,

spatially dependent information on the momentum. In case of particle production by a

homogeneous coherent background field the momentum may be assumed to be known, but

one has no prior information on the energy, which in this case is not conserved.

4.1 Klein problem

As our first example we consider the Klein problem for scalars i.e. a scalar particle reflecting

off a planar symmetric step potential, see figure 2. We discussed the Klein problem in the

case of fermions in [9], but the bosonic case has some additional special characteristics.

This problem could of course be solved by use of the Klein-Gordon wave equation, but

it provides a nice setting to illustrate how to solve a dynamical problem in our methods,

which allows us to demonstrate the physicality of our coherence shell solutions. In this case

the mass is constant, but interactions with the background potential can be represented

by a singular self-energy correction ΠH . It is easy to see that the effect of this correction is

equivalent to replacing the time derivative with a covariant derivative: i∂v0 → i∂v0 −V (vz)

in the inverse propagator eq. (2.23). The free KB-equation then becomes
(

[k0 − V (z)]2e−
i

2
∂V

z ∂
∆

kz − k2
z +

1

4
∂2
z + ikz∂z −m2

)

i∆< = 0 , (4.2)
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where we have accounted for the fact that the t- and ~x||-derivatives vanish and we have

taken ~k|| = 0. Taking the real and imaginary parts of eq. (4.2) we find:

(

k2
z −

1

4
∂2
z − k2

m cos

(

1

2
∂Vz ∂

∆
kz

))

i∆< = 0 (4.3)

(

kz∂z + k2
m sin

(

1

2
∂Vz ∂

∆
kz

))

i∆< = 0 , (4.4)

where km(z) ≡
√

(k0 − V (z))2 −m2, with V (z) = V θ(−z). To proceed further we define

the n-th moments of the Wightman function as integrals over kz:

ρn(k0, z) ≡
∫

dkz
2π

knz i∆
<(k0, ~k|| = 0, kz , z) . (4.5)

These integrals are convergent for arbitrary n only if i∆< is compactly supported or a

sufficiently rapidly decreasing distribution. This is not guaranteed in general. However, in

this paper we require only that the three lowest moments ρ0,1,2, which are related to the

free two-point correlator functions, are well defined. Of course, in the adiabatic limit where

eq. (3.18) is valid, the spectral form of the solution guarantees the existence of all moments.

These functions correspond to the weighted 2-point functions ρW eq. (4.1) with specific

weights Wn = (2π)3knz δ(k0 − k′0)δ
2(~k′||), which are all explicitly imposing that energy and

the momentum parallel to wall are conserved quantities. In the fermionic case we only

needed one weight function (a 2x2-density matrix) [9]. For the present problem we shall

need three different functions because of the explicit kz-dependence in eqs. (4.3)–(4.4).

Indeed, taking the 0th moment of eq. (4.3) and the 0th and 1st moments of eq. (4.4) the

following closed set of equations for the moment functions is obtained [16]:

1

4
∂2
zρ0 + k2

mρ0 − ρ2 = 0

∂zρ1 = 0

∂zρ2 −
1

2
(∂zk

2
m)ρ0 = 0 . (4.6)

The number of independent moments of course matches the number of independent on-

shell functions in the spectral solution. Using eq. (3.18) we get the following expressions

for ρ0,1,2 in terms of the on-shell functions f± and fc for k0 > 0 (and a constant mass m):

ρ0 =
1

2km
(f+ + f−) + fc

ρ1 =
1

2
(f+ − f−)

ρ2 =
km
2

(f+ + f−) , (4.7)

while the higher moments are trivially related to ρ1,2 by (n ≥ 1): ρ2n+1 = k2n
m ρ1 and

ρ2n+2 = k2n+1
m ρ2. Equations (4.6) are our master equations for solving the Klein problem.

It should be noted that we made no approximations to derive them, since all k-gradients

vanish from eqs. (4.6) upon integration over kz. Connection formulae (4.7), and the above
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Figure 2. Reflection from a step-like potential. Arrows describe the directions of momenta of the

in- and outgoing particles.

expressions for the higher moments are formally valid only in the mean field limit. However,

they can be used to set the physical boundary conditions between the on-shell functions

f±,c and moments ρ0,1,2 asymptotically in the limit z → ±∞.

It is easy to solve eqs. (4.6) in the separate regions I and II for the Klein problem (see

figure 2), where the potential term is either zero or a constant. These solutions will contain

eight unknown constants that can be fixed by the boundary conditions at z → ±∞ and the

matching conditions at the potential wall z = 0 induced by the moment equations (4.6).

First note that all spatial gradients vanish everywhere except at the wall at z = 0. Two

latter eqs. (4.6) then imply that ∂zρ1,2 = 0, i.e. ρ1,2 are constants in regions I and II.

From relations (4.7) it then follows that f± are also constants at |z| ≫ 0. Now consider

the boundary conditions appropriate for our reflection problem. The fact that there is no

incoming flux from the left sets f II
+ = 0, because f± were found to be constants. This

condition also sets coherence solution to zero asymptotically, i.e. fc → 0 as z → −∞, since

there are no asymptotic mixing states; note however that we cannot exclude coherence at

finite distances from the wall based on the boundary conditions alone. Finally, we can

normalize the incoming flux from the right to unity f I
− = 1. After these definitions we

have to account for two distinct possibilities depending on whether the momentum in the

region II, kII
m, is real or imaginary.

Let us first assume that k0 > V + m, so that kII
m ≡ q is real. In this case we can

have nonzero transmitted flux f II
− 6= 0. Moreover, from the first eq. (4.6) we find that ρ0 is

oscillatory in both regions I and II (kI
m ≡ k is always real)

ρi
0 = Ai cos(2ki

mz + δi) +
1

(ki
m)2

ρi
2 , (4.8)

where Ai and δi are new integration constants and ρi
2 are constants related to f i

± by

eq. (4.7), and we have denoted i =I,II. Combining eqs. (4.7) with eqs. (4.6) we find that

fc = − 1
4k2

m

∂2
zρ0, so that coherence solutions are also oscillatory. Since coherence should

vanish when z → −∞ we find that AII, BII = 0 in this case.

The remaining integration constants are fixed by the matching conditions at z = 0

induced by the moment equations (4.6). As ∂zρ1 vanishes everywhere we see that ρ1 must

– 11 –
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be continuous over the barrier. Equating ρI
1 = ρII

1 gives the flux conservation equation:

f II
− = 1 − f I

+ . (4.9)

The last eq. (4.6) implies that ρ2 must have a finite discontinuity over the barrier, which

can be computed by integrating it over a step from z = −ǫ to z = ǫ to give ρI
2 − ρII

2 =
1
2 [k2 − q2]ρ0(z = 0). Using this in the first eq. (4.6) we see that also ∂2

zρ0 has at most a

finite discontinuity over the barrier implying that ρ0 and its derivative ∂zρ0 are continuous

at z = 0. Using all these conditions we can fix the remaining integration constants to

eventually find the transmitted and reflected fluxes:

f I
+ =

(k − q)2

(k + q)2
, f II

− =
4kq

(k + q)2
, (4.10)

which are in accordance with the usual Klein-Gordon approach. Finally, the coherence

solution in the region I can be written in the form:

f I
c =

1

k

√

f I
+ cos(2kz) . (4.11)

It should be noted that if the coherence solution were neglected, the only consistent

solution for the reflection problem would have been f I
+ = 0, i.e. that of a classical,

complete transmission.

Now consider the case V −m < k0 < V +m for which q is imaginary. In this case we

cannot have mass-shell solutions in region II, so that both f II
± = 0. However, we cannot

exclude a coherence solution fc = − 1
4k2

m

∂2
zρ0 as long as it becomes asymptotically zero as

z → −∞. This indeed turns out to be the case: from eq. (4.6) we find that ρII
1,2 = 0 and

ρII
0 = AIIe2|q|z . (4.12)

In region I the solutions are of the same form as above above with a real q. We perform

the same matching procedure over the barrier as in the case of real q to fix the values

of remaining integration constants. Going through the algebra finally gives the expected

result with a complete reflection: f I
+ = 1. The coherence function in the region I is

again oscillatory:

f I
c =

1

k
cos(2kz + δ) with δ = arcsin

(

2k|q|
k2 + |q|2

)

, (4.13)

while in the region II it is a dying exponential

f II
c =

2k

k2 + |q|2 e
2|q|z . (4.14)

This vanishes as z → −∞ as required, but remains nonzero in the vicinity of the wall,

where it clearly describes the quantum tunnelling. Since f II
± = 0, the moment function ρ0 is

completely saturated by the coherence function. So the tunnelling effect is a pure coherence

phenomenon that can be interpreted as a maximally coherent virtual pair consisting of a

left-moving state and its right-moving “antistate”.
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4.2 Particle number

As another example, we will consider particle number in a spatially homogeneous sys-

tem. By taking the real and imaginary parts of equation (3.1) subjected to this particular

symmetry we get now:
(

k2 − 1

4
∂2
t −m2 cos

(

1

2
∂mt ∂

∆
k0

))

i∆< = 0 (4.15)

(

k0∂t +m2 sin

(

1

2
∂mt ∂

∆
k0

))

i∆< = 0 . (4.16)

Analogously to eq. (4.5) we again define the n-th moments of the Wightman function:

ρn(|~k|, t) =

∫

dk0

2π
kn0 i∆

<(k0, |~k|, t) . (4.17)

Again, three lowest moments form a closed set of equations:

1

4
∂2
t ρ0 + ω2

~k
ρ0 − ρ2 = 0

∂tρ1 = 0

∂tρ2 −
1

2
∂t(m

2)ρ0 = 0 . (4.18)

Note that these equations are exact to all orders of gradients of the mass m(t), assuming

that the surface terms in k0 vanish. Using the full spectral solution eq. (3.10) one finds the

following relations of moments to f±,c:

ρ0 =
1

2ω~k
(f+ − f−) + fc

ρ1 =
1

2
(f+ + f−)

ρ2 =
ω~k
2

(f+ − f−) . (4.19)

Unlike the evolution equations, these relations are only valid in the mean field limit. More-

over, in this approximation, the higher moments are again related to ρ1,2 by (n ≥ 1):

ρ2n+1 = ω2n
~k
ρ1 and ρ2n+2 = ω2n+1

~k
ρ2. Relations (4.19) can be inverted to give f±,c in terms

of ρi, i = 0, 1, 2. Following the Feynman-Stückelberg interpretation we now define the

phase space number densities for particles and for antiparticles respectively as

n~k ≡ f+(|~k|) and n̄~k ≡ −1 − f−(|~k|) . (4.20)

In terms of the three independent momentum components ρi, i = 0, 1, 2 we then find:

n~k =
1

ω~k
ρ2 + ρ1

n̄~k =
1

ω~k
ρ2 − ρ1 − 1

fc(|~k|) = ρ0 −
1

ω2
~k

ρ2 . (4.21)
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Using the free theory equations of motion (4.18) we can solve: ρ2 = 1
4∂

2
t ρ0 + ω2

~k
ρ0 to get

the expression for the particle number in the form

n~k = ω~kρ0 +
1

4ω~k
∂2
t ρ0 + ρ1 (4.22)

and the coherence solution now becomes just fc(|~k|) = −∂2
t ρ0/(4ω

2
~k
). Note that the moment

ρ1 remains a constant in a free theory, where ∂tρ1 = 0 by eq. (4.18). Setting a constraint

ρ1 = −1/2 then fixes n~k = n̄~k at all times, consistent with the fact that φ is a real scalar

field. In the operator formalism this constraint is imposed by the Wronskian normalization

of the mode functions [7]. These results extend trivially to the case of a complex scalar

field; the only difference is that then n̄~k can differ from n~k and ρ1 becomes a free parameter

related to the chemical potential.

Let us now compare our particle number (4.22) with other definitions in the literature.

Taking into account the free theory equation of motion (4.18) (and the thermal form of

the spectral function, eq. (6.6) below), the definition of the particle number by Aarts and

Berges in ref. [11] can be expressed as

(

n~k +
1

2

)2

= ρ0

(

ω2
~k
ρ0 +

1

2
∂2
t ρ0

)

. (4.23)

This agrees with our result (4.22) in the adiabatic, or small coherence limit: ∂2
t ρ0 ≪ ω2

~k
ρ0,

as can be directly seen by solving n~k and expanding the square root in eq. (4.23).

One interesting application is to consider particle number evolution during inflation.

When applied to expanding space-times in conformal coordinates all that changes in previ-

ous equations is replacing time with a conformal time: t→ η and the mass by an effective

mass m2 → m̄2 = a2m2−∂2
ηa/a, where a(η) = −1/(Hη), η < 0, is the scale factor. Match-

ing with the Bunch-Davies vacuum at early times, one finds that during pure De Sitter

phase

ρ0 = −1

4
πη|H(1)

ν (−kη)|2 m=0→ 1

2k

(

1 +
1

(kη)2

)

, (4.24)

where H
(1)
ν is the Hankel function of the first kind with ν2 ≡ 9/4 − (m/H)2 and H is the

Hubble expansion rate. It is easy to see that the gradient expansion in the De Sitter case

can be rewritten as an expansion in 1/|kη|, so that our inversion formulae (4.19) provide

a good approximation at early times, but break at the horizon crossing at kη ≈ 1. Using

eq. (4.22), still with ρ1 ≡ −1/2 we find that at early times, or ultraviolet limit k/a ≫ H,

our particle number behaves as

n~k ≈ 16a6

(

H

2k

)6

. (4.25)

This result differs from the particle number defined in ref. [7]:

n~k ≡ ω~kρ0 +
1

4ω~k
∂2
ηρ0 −

1

2
− 1

2ω~k

d

dη

(

∂ηa

a
ρ0

)

, (4.26)
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which at early times times becomes n~k ≈ a2(H/2k)2. This is not really surprising, because

the particle number is not unambiguously defined in curved spacetimes. The particle

number (4.26) is found by a diagonalization of the Hamiltonian and it corresponds to a

maximum particle number seen by an ideal detector. Our definition relies on phase space

arguments and corresponds to an adiabatic particle number [12], which rather tries to

minimize n. In particular for a conformally coupled scalar theory our particle number can

be shown to remain zero at all times if it was set to zero in the beginning.

4.3 Energy density and pressure

Let us next compute the expectation values of energy (Hamiltonian) density and pres-

sure, which are the 00- and the ii-components of the energy-momentum tensor (gµν is the

standard Minkowskian metric tensor with the signature (+,−,−,−)):

T µν =
∂L

∂(∂µφ)
∂νφ− Lgµν , (4.27)

respectively, in the spatially homogeneous case. For the energy density we get using the

free theory equations of motion (4.15)–(4.16)

〈H(t)〉 = 〈T 00(t)〉 = 〈1
2
(∂tφ)2 +

1

2
(∂xφ)2 +

1

2
m2φ2〉

=

∫

d4k

(2π)4
k2
0i∆

<(k0, |~k|, t)

=

∫

d3k

(2π)3
1

2
(n~k + n̄~k + 1)ω~k , (4.28)

and for the pressure we get in the same way

〈P (t)〉 = 〈T ii(t)〉 =

∫

d4k

(2π)4

(

1

3
~k2 + k2

0 − ω2
~k

)

i∆<(k0, |~k|, t)

=

∫

d3k

(2π)3

[

~k2

3ω~k

1

2
(n~k + n̄~k + 1) −

(

ω~k −
~k2

3ω~k

)

ω~kfc

]

. (4.29)

There is an explicit contribution from the coherence shell function fc in the pressure,

signalling that at the quantum level pressure differs from the statistical one. However,

as discussed in the analysis with fermions [10], we expect that in most cases the direct

coherence contribution is unobservable in the time-scales longer than the typical oscillatory

time ∆tosc ∼ 1/ω of the coherence solution. However if a strong amplification mechanism

is in place as in during inflation, even these coherent small scale oscillations might have

physical consequences.

Let us point out one delicate issue in computing the energy density and pressure from

the 2-point function. For example our result for the energy density (4.28) follows directly

from the direct space integral expression for the Hamiltonian. However, one might instead

try to start from a partially integrated form of the Hamiltonian density:

H̃ ≡ 1

2
φ
(

−∂2
t − ∂2

x
+m2

)

φ (4.30)
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Normally this Hamiltonian would give same result as H, since the only effect of using

the form (4.30) in (4.28) would be replacing k2
0 by ω2

~k
in the expression in the second

line. Here this difference matters however, because in the former case the k0-shell does

not contribute to the energy density whereas in the latter it does. This observation nicely

underlines the nonlocal nature of our coherence solutions. Indeed, although our equations

are parametrized by a well defined external time variable, the shell k0 = 0 corresponds to a

completely delocalized, constant mode in the internal variable u−v of the 2-point function

〈φ(v)φ(u)〉. Thus, the partial integration and the subsequent neglecting of the boundary

term leading to the alternative Hamiltonian H̃ is not a legitimate operation here.

5 Non-relativistic case, Schrödinger equation

Our methods can also be applied to non-relativistic problems. The extension is very simple,

and we give it here for completeness for a field ψ, possibly interacting with some background

potential V . That is, assume that ψ obeys the Schrödinger equation

i∂tψ = Hψ =

(

− 1

2m
∇2 + V

)

ψ . (5.1)

The Wightman function i∆<
ψ (u, v) ≡ 〈ψ†(v)ψ(u)〉 then obeys the equation:

(

i∂u0 +
1

2m
∇2
u − V (u)

)

i∆<
ψ (u, v) = 0 , (5.2)

which in the mixed representation reads:

(

k0 −
~k2

2m
+

1

8m
∇2
x +

i

2
∂t +

i

2m
~k · ~∇− V (x)e−

i

2
∂V

x ·∂∆

k

)

i∆<
ψ (k, x) = 0 . (5.3)

This equation resembles the free dynamical equation (3.1) for a relativistic scalar field. The

physical content of eq. (5.3) can again be most easily analyzed by studying the spatially

homogeneous and the static, planar symmetric cases.

In the homogeneous case we assume that the potential and the solutions ∆<
ψ can only

depend on time, so that:

(

k0 −
~k2

2m
− V (t) cos

(

1

2
∂Vt ∂

∆
k0

))

i∆<
ψ (k, t) = 0 (5.4)

(

1

2
∂t + V (t) sin

(

1

2
∂Vt ∂

∆
k0

))

i∆<
ψ (k, t) = 0 . (5.5)

This set of equations clearly has only positive energy particle solutions with the non-

relativistic dispersion relation k0 =
~k2

2m +V in the mean field limit, but no negative energy

antiparticle solutions, nor any coherence solution living at k0 = 0. This was to be expected

because antiparticles are not automatically a part of the spectrum of a non-relativistic

field theory. The absence of k0 = 0-shell here is thus consistent with its interpretation as

describing particle-antiparticle coherence. In static, planar symmetric case one still finds

the kz = 0-shell solution, which describes the spatial reflection coherence in accordance to

relativistic fields.
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5.1 Planar symmetric problems and bound states

Static, planar symmetric case is more interesting in the nonrelativistic limit. Here the

equations become identical to eqs. (4.3)–(4.4) for the relativistic scalar field in section 3.2,

apart from mass-shell dispersion relation, which here reads:

km = ±
√

2m(k0 − V ) − ~k2
|| . (5.6)

This is of course just the nonrelativistic limit of the dispersion relation used in (4.3)–(4.4).

Moreover, the moment equations are also obviously identical in form to equations (4.6).

As an example, let us consider the familiar infinite square well potential in 1-

dimensional quantum mechanics. Solving the moment equations (4.6) and imposing the

same matching conditions on the well boundaries as for the Klein problem, one finds that

the solution consistent with the asymptotic vanishing of ρ0 is

ρ0 = θII(z)

∞
∑

n=1

An
2π

L

(

1 + (−1)n+1 cos(2knz)

)

δ(k0 − En)

ρ1 = 0

ρ2 = θII(z)

∞
∑

n=1

An
2π

L
k2
n δ(k0 − En) , (5.7)

where the mass-shell momentum and energy are quantized: km = kn ≡ πn/L and En ≡
k2
n/(2m), with n = 1, 2, . . .. The function θII(z) ≡ θ(z + L/2) − θ(z − L/2) restricts the

solution to be nonzero only inside the potential well. The remaining constants An can be

set by the normalization of the solution. We shall soon see that for a pure state these

constants will correspond to the occupation numbers of the one-particle states labelled by

quantum number n. Next we shall interpret these results in terms of the spectral shell

solutions. The generic (mean field) spectral solution for the problem is given by

i∆<
ψ = 2π

[

2mfskz
δ(k2

z − k2
m) + fcδ(kz)

]

. (5.8)

With this normalization the relations between fi and the moments read:

ρ0 =
m

km
(f+ + f−) + fc

ρ1 = m (f+ − f−)

ρ2 = mkm (f+ + f−) . (5.9)

From equations (5.7)-(5.9) one finds now

i∆<
ψ = θII(z)

∞
∑

n=1

An
2π

L

[

knδ(k
2
z − k2

n) + (−1)n+1 cos(2knz)δ(kz)

]

2πδ(k0 − En) . (5.10)

We can estimate how good approximation this singular shell picture is by computing the

correlator i∆<
ψ directly from the one-particle wave functions. For that, we consider a

pure state

|ξ〉 ≡ |1f1 , 2f2 , . . .〉 ≡
∏

i

(â†i )
fi

√
fi!

|0〉 , (5.11)
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Figure 3. The phase space structure of the correlator i∆<
ψ,ξ(k, z). Shown is the expression inside

the square brackets in eq. (5.14) as a function of kz/kn at z = 0 for n = 9 (left) and n = 99 (right).

where [ân, â
†
m] = δn,m. The Wightman function corresponding to this state is

i∆<
ψ,ξ ≡ 〈ξ|ψ̂†(t, z)ψ̂(t′, z′)|ξ〉 , (5.12)

where ψ̂(t, z) =
∑

n e
−iEntψn(z)ân is the field operator and

ψn(z) =

{
√

2/L cos(knz)θII(z) , n = 1, 3, 5, . . .
√

2/L sin(knz)θII(z) , n = 2, 4, 6, . . .
(5.13)

are the normalized one-particle wave-functions in the well. A direct computation of the

zeroth moment then gives exactly the same expression as in eq. (5.9) with An = fn.

However, the full Wigner transformed correlator (5.12) becomes now:

i∆<
ψ,ξ(k, z) = θII(z)

∞
∑

n=1

fn
2π

L

[

∑

±

sin((kz ∓ kn)(L− 2|z|))
kz ∓ kn

+

(−1)n+1 sin(kz(L− 2|z|))
kz

2 cos(2knz)

]

δ(k0 − En) . (5.14)

We can see that the entire kz-dependence of this correlator is encoded into a function

sin(q(L− 2|z|))/q, which is a representation of the Dirac delta function in the limit kn(L−
2|z|) ≫ 1:

sin(q(L− 2|z|))/q −→ πδ(q) . (5.15)

In this limit the correlator (5.14) reduces to the spectral form shown in eq. (5.10). In

figure 3 we have plotted the correlator (the expression in the square brackets) eq. (5.14)

as a function of kz at the centre of the square well at z = 0 for n = 9 and n = 99

corresponding to kn(L − 2|z|) ≈ 30 and 300, respectively. It is clear that the phase space

structure approaches the singular form as the momentum scale kn, compared to the distance

from the walls, increases. Similar conclusions hold also in the case of mass- or potential

walls. In particular for a step wall the spectral form for the correlator becomes exact when

the distance of the wall is large in units 1/k.

Let us stress that our only use for the singular shell approximation is to relate the

moment functions to on-shell functions in adiabatic regime and to provide a practical

scheme to evaluate the collision term that gives rise to a closed set of equations for the
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moments ρ0,1,2 (or equivalently the on-shell functions f±,c). The results of this section

show that that this scheme can be useful even in most extreme situations. Indeed, even a

correlator shown in the left panel of figure 3 should be reasonably well represented by a

singular ansatz in the collision integral whenever the matrix element is a relatively smooth

function of momentum. For smooth wall profiles and for slowly varying driving forces

the correlator can approach the singular ansatz even inside the transition region. The

quantitative measure for this is the ratio of the momentum to the rate of change of the

potential. Finally, let us point out that our results show that the new kz = 0-shell is equally

well visible and concentrated as the standard mass-shells. That is, our approximation for

the phase space is in no means less rigorous than the standard derivation of the ordinary

Boltzmann equations relying only on the mass-shell contributions.

6 Spectral function and thermal limit

Having shown that the coherence solutions are part of the spectrum of the dynamical

2-point function, let us now show that they do not appear in the pole functions, or in

particular in the spectral function A. We shall only consider the spatially homogeneous

noninteracting case. With no interactions the equation for A eq. (2.17) becomes identical

with the K-G equation (3.1) for ∆<. Consequently, the most general solution fulfilling the

mean field phase space constraints must be identical to eq. (3.10) with three yet undefined

on-shell functions fA± and fAc . However, the spectral function must also satisfy the spectral

sum-rule, which in direct space reads

2 ∂t′A(t′, ~u; t, ~v)t′=t = −iδ3(~u− ~v) . (6.1)

This follows from the canonical equal time commutation relations of the scalar field φ, or it

can be derived from the pole equations (2.17)–(2.18). Transforming eq. (6.1) to the mixed

representation gives
∫

dk0

π

(

k0 +
i

2
∂t

)

A(k, x) = 1 . (6.2)

The time-derivative appearing in this representation is usually omitted in the literature,

by an implicit assumption of translational invariance. This is appropriate for example for

thermal equilibrium systems, but for more general nonequilibrium problems it does give

a new independent constraint. In terms of moment functions ρAn ≡
∫

dk0
2π kn0 A the sum

rule (6.2) becomes:

ρA1 =
1

2
, ∂tρ

A
0 = 0 . (6.3)

The latter constraint implies that ρA0 = const. and furthermore ∂2
t ρ

A
0 = 0. Dynamical

equations for the moment functions ρAn are of course identical to eqs. (4.18) for ρn. Imposing

the sum-rule constraints on these equations we find that also ρA2 = const. One then finds

that either ρA0 = ρA2 ≡ 0, or the mass is a constant everywhere. To get a continuous

constant mass limit we must always set:

ρA0 = ρA2 = 0 , ρA1 =
1

2
. (6.4)
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Connection formulae identical to eq. (4.19) between ρAn and fA±,c then give:

fA± =
1

2
, fAc = 0 . (6.5)

These will finally reduce A to its standard thermal form

A = πsgn(k0) δ
(

k2 −m2
)

. (6.6)

Let us finally consider the thermal equilibrium limit for the function i∆<. The new con-

straining element here is the Kubo-Martin-Schwinger (KMS) boundary condition

∆>(t) = ∆<(t+ iβ) . (6.7)

However, first note that the relation ∆> − ∆< = −2iA sets

f>± − f<± = 1 and f>c − f<c = 0 . (6.8)

Then the momentum space version of the KMS-condition: ∆>
eq(k0) = eβk0∆<

eq(k0) is enough

to set the mass-shell distributions to the statistical limit:

f<k0 = neq(k0) and f>k0 = 1 + neq(k0) , (6.9)

where neq(k0) = 1/(eβk0 − 1) is the usual Bose-Einstein distribution. Moreover, coherence

functions are subjected to constraint

f<c = f>c . (6.10)

However, the KMS-condition only makes sense when the system has a time-independent

Hamiltonian. This implies time-translational invariance in real time which immediately

eliminates coherence, leading to the standard thermal expressions [5]:

i∆<
eq = 2πsgn(k0)neq(k0)δ

(

k2 −m2
)

,

i∆>
eq = 2πsgn(k0)(1 + neq(k0))δ

(

k2 −m2
)

. (6.11)

7 The case with collisions

We now move to consider the case with collisions. As explained in the introduction we

are using exact forms of the integrated evolution equations except for the evaluation of

the collision terms. It is only there that we need to use the (in general approximate)

connection formulae (4.19) between the moments and the on-shell functions to get the

collision integrals in closed form. The complete set of Schwinger-Dyson equations of the

interacting theory (2.17)–(2.19) are too complicated to be used in practical applications

without approximations. Here we make a series of approximations that will enable us to

consider the essential quantum dynamics in terms of the three lowest moments ρ0,1,2 in the

presence of collisions.

First, we will consider a weakly interacting theory, so that the usual quasiparticle

approximation applies. This means that the term ∝ ΠH∆< is included to modify the
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dispersion relations in both the pole equations (2.17)–(2.18) and in the dynamical equa-

tion (2.19) for the Wightman function i∆<. However the terms ∝ Γ, which are the source

of broadening of the phase space of the pole functions are neglected in the pole equations

entirely to allow a singular phase space structure, as usual in thermal field theory. Using

the constraint ∆>−∆< = −2iA one can show that within the quasiparticle approximation

it is consistent to drop the term ∝ Π<∆H in the dynamical equation (2.19), and neglect

the collision term when working out the spectral structure for ∆< , even if in the coupling

constant expansion the dropped terms are of same order as ΠH and collision integral C.

A more complete derivation of these approximations and discussion of the role of different

self-energy functionals could be found in ref. [5]. Second, we will compute the collision

term in the r.h.s. of eq. (2.19) only up to first order gradients; this should be a good ap-

proximation at least for cases where the variations are affecting only a small subset of the

entire interacting system. With these approximations one can find the desired reduction

to three moments only. However, we shall here neglect also the term ∼ ΠH∆<, which

would just change the dispersion relations of the states, without altering the qualitative

aspects of collisions on the evolution of the system. This leaves us with the flow term of

the free theory. The final form of the dynamical equation with collisions in the spatially

homogeneous case then reads:

(

k2 − 1

4
∂2
t + ik0∂t −m2e

− i

2
∂m

t ∂∆

k0

)

i∆< = iCcoll, (7.1)

where the collision term is

Ccoll = −
(

Γ i∆< − iΠ<A
)

+ i♦

(

{Γ}{i∆<} − {iΠ<}{A}
)

≡ C0 + iC1 . (7.2)

Taking the real and imaginary parts of eq. (7.1) gives the coupled equations:

(

k2 − 1

4
∂2
t −m2 cos

(

1

2
∂mt ∂

∆
k0

))

i∆< = −C1

(

k0∂t +m2 sin

(

1

2
∂mt ∂

∆
k0

))

i∆< = C0 . (7.3)

Our first task is to find the singular shell structure for i∆<. As explained above, consistency

with the quasiparticle limit of the phase space requires neglecting the collision terms and

also the gradients of the mass m2 (as explained in section 3), so that we are left with the

same mean field constraint equations (3.2)–(3.3) as in the free theory case. We then find

the familiar shell structure for the Wightman function:

i∆< = 2π
(

sgn(k0)fsk0
δ(k2 −m2) + fcδ(k0)

)

, (7.4)

and the same relations between the functions f±,c and the moments ρ0,1,2 as in the free field

case, given by eq. (4.19). These relations are the core of our approximation scheme, since

they allow the equations of motion derived from (7.3) to close with only the three lowest
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moments. Indeed, integrating both equations in (7.3) with a flat weight and the second

equation weighted by k0, we get the following generalizations of the free-field moment

equations (4.18):

1

4
∂2
t ρ0 + ω2

~k
ρ0 − ρ2 = −〈C1〉

∂tρ1 = 〈C0〉

∂tρ2 −
1

2
∂t(m

2)ρ0 = 〈k0C0〉 , (7.5)

where the collision integrals appearing on the r.h.s. of eqs. (7.5) are

〈C1〉 =
1

2
∂t

∫

dk0

2π

(

∂k0Γ i∆
< − ∂k0iΠ

<A
)

〈C0〉 = −
∫

dk0

2π

(

Γ i∆< − iΠ<A
)

〈k0C0〉 = −
∫

dk0

2π
k0

(

Γ i∆< − iΠ<A
)

. (7.6)

The problem with these equations is that functions Γ and Π< can have an arbitrary phase

space structure, so that the collision integrals are a priori not related to the moments ρi in

any simple way. That is, equations (7.5)–(7.6) do not close. This is of course to be expected,

because integration erases a lot of information from the system. Equations (7.5)–(7.6) are

in fact useful only if the collision terms can be reasonably well approximated by some

expansion in the lowest moments. This is precisely what our singular shell structure for

the Wightman function i∆< does. Indeed, when the structure (7.4) is fed into the collision

integrals (7.6), they become completely parametrized by the on-shell functions f±,c, which

on the other hand are related to the lowest moments ρ0,1,2 via eq. (4.19). Note that this

approach is more elaborate than a simple truncation of the moment expansion, because

the singular shell structure provides nontrivial information about the phase space of the

collision integrals. This is of particular importance for the coherence shells, as we shall

see below.

To be specific, let us assume a simple thermal interaction for which the self-energies

do not depend on ∆< and obey the KMS-relation Π> = eβk0Π<. Moreover, it is natural to

require (at least in the vicinity of the mass-shell) that Γ(−k0) = −Γ(k0) and Γ(k0 = 0) = 0.

These assumptions should hold quite generally for a thermal Γ; in the appendix A we will

show explicitly that they hold in the case of a three body Yukawa interaction. Then,

using the relation i∆<
eq = 2neqA given by eqs. (6.6) and (6.11), and the inverse relations of

eq. (4.19) we find:

〈C1〉 =
1

2
∂t

[

1

2ω~k
∂k0Γm(f+ − f−) + ∂k0Γ0fc

]

〈C0〉 = − 1

2ω~k
Γm
[

(f+ + f−) − (f eq
+ + f eq

− )
]

〈k0C0〉 = −1

2
Γm
[

(f+ − f−) − (f eq
+ − f eq

− )
]

, (7.7)
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where we have defined f eq
± ≡ neq(±ω~k), and we have neglected terms of order

O(Γ2, ∂t(m
2)Γ). The Γi-functions involve projections onto the mass- and the zero-

momentum shells:

Γm(|~k|, t) ≡ Γ(k0 = ω~k(t), |~k|)
∂k0Γ0(|~k|) ≡ ∂k0Γ(k0 = 0, |~k|) . (7.8)

Note in particular that the derivative term is computed at “off-shell” value k0 = 0 corre-

sponding to the coherence shell. Expressing f -functions in terms of the moment functions

through eqs. (4.19), and inserting the resulting expressions back to equations (7.5) we

eventually find a closed set of equations:

1

4
∂2
t ρ0 + ω2

~k
ρ0 − ρ2 = −1

2
∂k0Γ0 ∂tρ0

∂tρ1 = − 1

ω~k
Γm (ρ1 − ρ1,eq)

∂tρ2 −
1

2
∂t(m

2)ρ0 = − 1

ω~k
Γm (ρ2 − ρ2,eq) . (7.9)

Eqs. (7.9) are the master equations that are used in section 8 to study the coherent pro-

duction of unstable particles in an oscillatory background.

8 Coherent production of unstable particles

In this section we shall compute the effect collisions on the coherent production of unstable

scalar particles in the presence of a time varying driving field. This problem is very similar

to the one we considered for fermions in ref. [10]. In fact we are taking the mass term

driving the particle production to be of the same form as in [10]:

m2(t) ≡ |m0 + e−γτ
(

A cos(2ωϕt) + iB sin(2ωϕt)
)

|2 , (8.1)

where m0, A, B, ωϕ (oscillation frequency of the the driving field ϕ) and γ are real con-

stants. To illustrate more clearly the qualitative aspects of the method we take some

parameters of the model in this example to be outside the adiabatic limit. Reader is

warned that this may make quantitative results somewhat inaccurate. It should be em-

phasised that the method, especially the calculation of n~k is proven only in adiabatic limit.

The task is simply to compute the collision functions Γm and ∂k0Γ0 appearing in (7.8) for

the particular model under consideration, and solve the equations (7.9) with some suitable

initial conditions. Here we shall consider the interaction

Lint = −y ψ̄ψφ , (8.2)

where φ is the real scalar field whose dynamics we are interested in, and ψ is some fermion

field, which will be assumed to be in thermal equilibrium at all times. We assume that

mφ > 2mψ at least for some t, and consider the effect of the induced instability on the
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φ-particle production. The explicit expressions for Γm and ∂k0Γ0 that we will be using are

computed in the appendix A.

Numerical solution of equations (7.9) is not always straightforward; depending on the

precise form of the driving term they can become very unstable against numerical errors.

The problem can be traced to the third equation in (7.3). It turns out that for strong

driving fields the dynamical evolution of ρ2 is very delicate and it is impossible to discern

the physical solution from exponentially growing spurious numerical errors. However, these

instabilities can be circumvented by transforming equations (7.9) into an equivalent set of

nonlinear equations in the presence of a constraint. Indeed, taking the sum of the first

equation in (7.9) multiplied by −2∂tρ0 and the third equation multiplied by 2ρ0 we will

get first order differential equation:

∂tX = −2∂tρ0 〈iC1〉 + 2ρ0 〈k0C0〉 , (8.3)

where

X = 2ρ2ρ0 − ω2
~k
ρ2
0 −

1

4
(∂tρ0)

2 . (8.4)

One observes that the function X is a constant of motion in free theory, and so it should

only change slowly in the interacting theory providing collision integrals are small, which

should be the case for the perturbation expansion to be valid. Initial value of X can of

course be calculated from initial values of ρi:s. The advantage of this formulation is that

we can use the algebraic equation to solve ρ2, while replacing the dynamical equation for

ρ2 by a much better behaving equation for X. That is, we use the equations

1

4
∂tY + ω2

~k
ρ0 − ρ2 = −1

2
∂k0Γ0 Y

∂tρ1 = − 1

ω~k
Γm (ρ1 − ρ1,eq)

∂tX = ∂k0Γ0 Y
2 − 2ρ0

Γm
ω~k

(ρ2 − ρ2,eq) , (8.5)

where Y ≡ ∂tρ0 and ρ2 = (X + 1
4Y

2 +ω2
~k
ρ2
0)/2ρ0. Moreover, thermal values for ρ1,2 can be

seen from eqs. (4.19) and (6.9)2: ρ1,eq = −1
2 and ρ2,eq = ω~k(neq(ω~k) + 1

2). Equations (8.5)

are numerically stable and easy to solve. In figure 4 we show the evolution of the number

density n~k and the absolute value of the coherence function fc(|~k|) as given by eq. (4.21):

n~k =
1

ω~k
ρ2 −

1

2
and fc(|~k|) = ρ0 −

1

ω2
~k

ρ2 , (8.6)

under the influence of a driving mass term (8.1). The uppermost panel corresponds to

case without collisions. The increase of the number density (thick solid line) is seen to

be accompanied by a steady growth of the amplitude of the coherence (rapidly oscillating

thin dotted blue line). In the middle panel we show the same solution in the case where

2The equation for ρ1 in eqs. (8.5) is actually trivial in the case of a real scalar field where ρ1 = −
1

2

throughout. However, these equations are valid as such also for a complex scalar field, where ρ1 becomes a

dynamical variable related to a chemical potential.
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Figure 4. Shown is the number density n~k (thick solid line) and the coherence function fc(|~k|)
(dotted(blue) line) with changing interactions. The driving mass function is taken to be m2(t) =

|(1+1.5 cos(2ωϕt)+ i 0.1 sin(2ωϕt))T |2. The upper panel corresponds to the case without collisions.

In the central panel we have included the collision terms on the mass-shells, but kept ∂k0Γ0 = 0.

In the lowest panel the full interaction terms were kept for all shells. For parameters we have used

|~k| = 0.6T , y = 1, mψ = 0.1T and ωϕ = 0.1T , where temperature T sets the scale. At τ ≡ ωϕt = 0

the system is in the adiabatic vacuum.

we have included only the mass-shell collision terms, but set artificially ∂k0Γ0 ≡ 0. Here

one sees that the number density decreases in the intervals between the stepwise growth

as a result of decays. Finally the lowest panel shows the case where all collision terms are

included properly. It is interesting that the growth of the number density is most strongly

affected by the collisions acting on the coherence solution. This can be understood when

one solves for the time-evolution of n~k directly from (7.9). The result is:
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Figure 5. The same configuration as in the lowest panel of figure 4 but with driving mass term

smoothly set to constant m = 2.5T after τ > 4π.

∂tn~k = (∂tω~k)fc −
1

ω~k
Γm(n~k − neq k̃) . (8.7)

That is, the creation rate of n~k is completely controlled by the coherence. Thus collisions

that destroy the coherence also directly cut down the growth of the number density. This

is potentially more important effect than the decay of the already created particle number

effected by the on-shell decay rate Γm.

From equations (8.5) it is not obvious how collisions affect the coherence. However,

it can be shown that their only stationary solution corresponds to Yeq = 0 and Xeq =

(neq(ω~k) + 1
2)2, and this equilibrium limit can only be reached only through the effect of

∂k0Γ0-terms. That this solution corresponds to vanishing coherence, becomes most evident

when the evolution equations are written directly in terms of fc. The general form of

eqs. (8.5) is quite messy when written in terms of the fi-functions, but they become much

simpler if we assume that the driving mass term is a constant. In this limit the growth

term for n~k vanishes in eq. (8.7) and the equation for fc becomes:

∂2
t fc + 4ω~kfc = −2∂k0Γ0∂tfc . (8.8)

That is, when the driving term is shut off, the particle number decays towards the equilib-

rium value with a rate given by Γm as expected. Simultaneously the coherence is driven

to zero by the interaction term ∂k0Γ0. Note that collisions act as a friction on coherence,

just as in the case with fermions [10]. Thus the solution is an oscillating function with

an exponentially dying amplitude. We demonstrate this behavior from the full equations

in figure 5 for a particular initial configuration created from vacuum by the same driving

term used in figure 4.

Finally, in figure 6 we show the evolution of the number density under the influence

of a driving force whose amplitude decays in time with the exponent γ = 0.05. The black

solid line corresponds to a noninteracting case, and the thin solid (green), dash-dotted

(blue) and dashed (red) lines to interacting cases with increasing strength of interaction.

The dotted line corresponds to the local equilibrium number density neq. This function
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Figure 6. Number densities of particles in same configuration as before but with |~k| = 0.3T and

mass oscillation amplitude suppressed by exponent with γ = 0.05. The black solid line corresponds

to a noninteracting case y = 0, and the thin solid (green) y = 1, dash-dotted (blue) y = 3 and

dashed (red) y = 5 lines cases with different interaction strengths. The thin dotted line corresponds

to the local equilibrium number density neq.

oscillates as a result of the time-varying mass of the field. The steady growth of the

particle number is now absent, as a result of the non-resonant nature of the driving field.

The instantaneous particle number is mostly controlled by the quantum coherence effects

when the interactions are absent or weak. In the case with weakest interactions the particle

number is still strongly modulated by the background field, but there is a clear decaying

trend due to interactions. In the case shown by dash-dotted (blue) curve the interactions

are so strong that they almost eliminate the coherence after the first peak and the tendency

of interactions to push the particle number towards their equilibrium values is beginning

to show. This tendency is even clearer in for the dashed (red) curve corresponding to most

strongly interacting case. In the limit of infinitely strong interactions no coherence would be

left and the particle number would follow the local adiabatic equilibrium particle number.

These examples show that using our methods it is possible to describe coherent particle

production in the presence of decohering interactions. We considered only the case of

decay, but it would be straightforward to extend the treatment to the case of collisions.

The effect of collisions was qualitatively different on the mass-shell and on the coherence

solutions, since in the latter case interactions introduce a friction term that tends to erase

the oscillating coherence function, whereas the mass shell distributions were found to feel

the usual relaxation towards equilibrium.

9 Conclusions and outlook

In this paper we have derived quantum transport equations including nonlocal coherence

effects for relativistic and nonrelativistic scalar fields in systems with particular spacetime

symmetries. The time-dependent but homogeneous systems include for example particle

production during phase transitions or during the inflation in the early universe. The
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static, planar symmetric problems include for example reflection off a potential, such as

Klein problem, or off a mass wall induced by a phase transition front in the early universe.

The key observation leading to a calculable approximation scheme was the observation

that in both of these geometries the 2-point correlator, written in the mixed representation,

has new spectral solutions living on shell k0 = 0 in the homogeneous case and on shell

kz = 0 in the static planar symmetric case. These solutions were interpreted to carry

information on the nonlocal coherence between particle and antiparticle excitations in the

former and between left- and right moving states in the latter case. We demonstrated

the physical nature of these new spectral solutions by applying the formalism to exactly

solvable models, such as relativistic Klein problem and bound states in one dimensional

nonrelativistic potential well.

The nontrivial singularity structures described above were found as an approximation

to collisionless equations to the lowest order in gradients. The core of our calculational

scheme was the argument that these structures should provide a reasonable ansatz for the 2-

point function when relating the moments to physical on-shell functions at the boundary of

the system and when computing collision terms in the moment expansion of the Kadanoff-

Baym equation. When the ansatz is introduced into the collision terms they become

completely parametrized by the on-shell functions in the ansatz. Because the on-shell

functions can be uniquely related to the lowest moment functions, the resulting moment

equations can be solved. Despite the simplicity of the resulting equations, they contain the

essential information about the evolution of nonlocal quantum coherence under decohering

interactions. Based on the nature of the approximation we argue that our method could be

useful even when the background field is not necessarily slowly varying. Method requires

the existence of an adiabatic boundary, or boundaries where the on-shell functions can

be related to the moment functions. It is thus best suited to problems with localized

disturbances in background field configurations with asymptotic adiabatic boundaries.

Our method provides a natural definition for the adiabatic particle number n~k related

to the value of the phase-space functions multiplying the singular mass-shells. This defini-

tion was applied to the particle number evolution during inflation where it was shown to

correspond to the adiabatic particle number defined e.g. in ref. [12]. Moreover, our particle

number coincided with the definition of ref. [11] for slowly varying fields. We also computed

the particle number evolution in the presence of a driving background interaction in the

form of a time-dependent mass term. This situation could model for example the particle

creation during phase transitions or at the end of the inflation. We then included deco-

herence assuming that the scalar particles created by the background fields were unstable.

We found that the effect of interactions on particle number divided to two parts: first the

existing particle number was suppressed by decays as expected and secondly interactions

provided a friction term on the growth of the coherence. However, as the growth of n~k was

found to be completely controlled by coherence, the friction term turned out to be most

efficient in reducing the particle number created by unit time.

Many of the results presented here were qualitatively similar to those derived earlier

by us [9, 10] for fermions. However, details of the derivation were substantially different

so as to warrant a complete independent treatment in this paper. It would be interesting
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to apply our formalism to study for example the effect of collisions or decays on the pro-

duction of scalar fields in a realistic model for a parametric resonance. It should also be

straightforward to extend our nonrelativistic formulation for example for 3D-cubic lattice

potentials and study atoms in such lattices under the influence of external thermal noise.
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A Yukawa interaction with thermal background

In this appendix we compute the appropriate self-energies for the use of the master equa-

tions (7.9) in the case of a Yukawa interaction with thermal background. We start with

the interaction Lagrangian:

Lint = −y ψ̄ψφ (A.1)

where φ is the considered real scalar field and ψ is some fermion field. We use the 2PI

effective action method to calculate the self-energies (2.4) at 1-loop level. The lowest order

2PI-graph based on interaction (A.1) (figure 7) gives the contribution

Γ2PI = −y2

∫

C
d4u d4vTr [G(u, v)G(v, u)] ∆(u, v) , (A.2)

where G is the propagator of the fermion ψ and the integration is over the Keldysh time

path. From this we get the self-energies by use of eq. (2.6). In particular, after performing

the Wigner transformations we have:

iΠ<,>(k, x) = −y2

∫

d4k′

(2π)4
Tr
[

G>,<(k′, x)G<,>(k + k′, x)
]

. (A.3)

We assume thermal background so that the fermion ψ distributions appearing in the loop

are thermal. The appropriate thermal propagators with real constant mass are (see for

example [5]):

iG<eq(k) = 2π sgn(k0)
(

k
/

+mf

)

nfeq(k0)δ(k
2 −m2

f )

iG>eq(k) = 2π sgn(k0)
(

k
/

+mf

)

(1 − nfeq(k0))δ(k
2 −m2

f ) , (A.4)

where nfeq(k0) ≡ 1/(eβk0 + 1) is the standard Fermi-Dirac distribution function.

In our present analysis we need to evaluate the self-energies Π<,> both on the mass-

shell k2
0 − ~k2 = m(t)2 as well as on the k0 = 0-shell. On the mass-shell we get:

iΠ<(k0 = ±ω~k(t), |~k|) =
|y|2T
4π|~k|

λm
m2

θ(λm)

∫ α+β

α−β
dy

1

(ey + 1)(ek0/T−y + 1)
, (A.5)

with

α =
k0

2T
and β =

λ
1/2
m

2m2

|~k|
T
, (A.6)
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Figure 7. The only diagram contributing to the self-energy at 1-loop level.

where λm ≡ λ(m2,m2
f ,m

2
f ) ≡ m2(m2 − 4m2

f ) is the usual kinematic phase space function

on the mass-shell. On the k0 = 0-shell we get instead:

iΠ<(k0 = 0, |~k|) =
|y|2T
4π|~k|

λ0

~k2

(

1 − tanh

(

λ
1/2
0

4|~k|T

))

, (A.7)

where now λ0 ≡ λ(−~k2,m2
f ,m

2
f ) ≡ ~k2(~k2 + 4m2

f ).

Since we are computing Πab’s in the thermal limit, the expression for Π> can be

obtained from that for Π< by use of the Kubo-Martin-Schwinger (KMS) relation:

Π>(k) = eβk0Π<(k) , (A.8)

This relation follows directly from the corresponding relation between the thermal equilib-

rium propagators G<,>eq eq. (A.4). Using this relation we find that

Γ(k) =
i

2
(1 + eβk0)Π<(k) . (A.9)

Now a direct computation shows that

Γ(−k0, |~k|) = −Γ(k0, |~k|) and Γ(k0 = 0, |~k|) = 0 , (A.10)

such that the assumptions made in section 7 are indeed verified for this type of interaction.

For the use of the master equations (7.9) we still need the derivative ∂k0Γ0(|~k|) ≡ ∂k0Γ(k0 =

0, |~k|). A direct computation gives

∂k0Γ(k0 = 0, |~k|) =
1

2T
iΠ<(k0 = 0, |~k|) . (A.11)

Expressions (A.5) and (A.7) together with the relations (A.9)–(A.11) complete the com-

putation of all required self-energy functions for the use of the master equations (7.9).
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